346 research outputs found

    Representation of acoustic deviations by neurons and local fieldpotentials in the auditory cortex of the awake rat

    Get PDF
    Veränderungen in der akustischen Umwelt sind häufig mit Ereignissen verbunden. Diese wiederum können für ein Tier eine besondere Verhaltensrelevanz haben, im Gegensatz zu einem gleichbleibenden akustischen Hintergrund, der mit keinem positiven oder negativen Ereignis verbunden ist. Es ist also naheliegend zu spekulieren, dass Veränderungen oder neue akustische Reize im zentralen Nervensystem anders repräsentiert werden als der kontinuierliche Hintergrund und dass diese Repräsentation sowohl von der Häufigkeit der Stimuli als auch vom Unterschied zum akustischen Hintergrund abhängt. In Elektroenzaphalografie-Messungen (EEG) am Menschen wurde eine besondere Aktivitätsänderung bei auditorischen Abweichungen erstmals 1978 nachgewiesen. Dabei wurde ein akustischer Reiz über einen längeren Zeitraum regelmäßig wiederholt (Standard) und in einigen, seltenen Fällen durch einen anderen Reiz (Deviant) ersetzt. Dieser Deviant löste eine zusätzliche negative Komponente im EEG aus (Mismatch negativity), die bei den Standard-Stimuli nicht vorhanden war. Eine Voraussetzung, um MMN auszulösen, ist die Präsentation von einigen Standard-Stimuli, sodass eine neuronale Repräsentation des Stimulus aufgebaut werden kann, gegen die jeder weitere Reiz abgeglichen wird. Die zelluläre Basis von MMN und des zugrunde liegenden Mechanismus zur Detektion von auditorischen Veränderungen ist nur wenig erforscht. Als möglicher zellulärer Detektionsmechanismus akustischer Veränderungen wurde die Stimulus-spezifische Adaptation (SSA) vorgeschlagen, die zugleich der Ursprung von MMN im primären auditorischen Kortex sein könnte. SSA beschreibt die Eigenschaft von Neuronen der Hörbahn, auf die Wiederholung von identischen Reizen mit abnehmender Aktivität zu antworten und zugleich die Fähigkeit beizubehalten, andere Stimuli weiterhin mit hoher Aktivität zu repräsentieren. Die veränderte neuronale Repräsentation von Tönen mit niedriger Auftrittswahrscheinlichkeit, im Vergleich zu Tönen mit hoher Auftrittswahrscheinlichkeit, wurde bereits sehr eindrücklich im auditorischen Kortex der anästhesierten Katzen demonstriert. Die vorliegende Arbeit hat es sich zum Ziel gesetzt, bei der Repräsentation von auditorischen Abweichungen die Lücke zwischen der Ebene aufsummierter Potenziale (EEG beim Menschen) und der Ebene einzelner kortikaler Neurone zu schließen. Gleichzeitig sollte dabei erstmalig SSA im auditorischen Kortex des wachen Tieres nachgewiesen und so eine pharmakologische Interaktion der normalerweise eingesetzten Anästhetika mit SSA ausgeschlossen werden. Der experimentelle Ansatz basierte auf elektrophysiologischen Messungen mit chronisch implantierten Mikroelektroden im wachen Tier. Die Elektroden waren im auditorischen Kortex positioniert und ermöglichten eine gleichzeitige Messung der lokalen aufsummierten Potenziale (lokale Feldpotenziale, LFP) und der Aktionspotenziale einzelner Neurone als extrazelluläre Potenzialveränderungen. Das Stimulationsparadigma bestand aus Folgen zweier Reintöne, die mit unterschiedlicher Auftrittwahrscheinlichkeit präsentiert wurden. Der Ton mit hoher Auftrittwahrscheinlichkeit bildete den akustischen Hintergrund, der Ton mit niedriger Auftrittswahrscheinlichkeit (Deviant) die akustische Abweichung. In dieser Arbeit konnte erstmalig nachgewiesen werden, dass Neurone im auditorischen Kortex der wachen Ratte akustische Abweichungen mit einer höheren Aktivität repräsentieren als den auditorischen Hintergrund (bis zu 19,5% Aktivitätsunterschied). Stimulusspezifische Adaptation ist somit auch im wachen Tier Teil der neuronalen Codierung der akustischen Umwelt. Mithilfe der Signalentdeckungstheorie konnte des Weiteren gezeigt werden, dass die unterschiedliche neuronale Repräsentation von häufigen und seltenen Stimuli auch zu einer erhöhten neuronalen Unterscheidbarkeit zwischen beiden Stimuli führte. Auf der Ebene der ereigniskorrelierten LFPs konnte SSA in zwei Komponenten nachgewiesen werden: der ersten, negativen Auslenkung und der folgenden, positiven Auslenkung. Besonders in der ersten, negativen Komponente war SSA systematisch nachzuweisen und sie war zusätzlich starkmit der Aktivität der einzelnen Neuronen korreliert, während die positive Komponente der LFPs keine Korrelation mit den Messungen der einzelnen Nervenzellen zeigte. Der Grad der SSA hing von der Auftrittwahrscheinlichkeit und dem Frequenzabstand der beiden Töne ab. Keine der Messungen hatte die besondere Charakteristik von MMN. Zusammenfassend lässt sich die Aussage treffen, dass SSA auch im wachen Tier nachgewiesen wurde, sowohl auf der Ebene einzelner Neurone als auch in der aufsummierten Aktivität, wenn auch in einer schwächeren Ausprägung als in den bisher veröffentlichten Ergebnissen in anästhesierten Tieren. Ein direkter Beitrag der kortikalen Neurone zu MMN konnte nicht gezeigt werden, es gab aber einen starken Zusammenhang zwischen den einzelnen Neuronen und den LFPs.The representation of behaviorally relevant stimuli in a noisy and complex environment that consists of multiple signals from different sources is one of the major challenges for the auditory system. The statistics of stimuli provide critical cues for structuring such an environment for optimizing the neuronal coding of it and for selecting vital information from it. In this respect, infrequent deviations in a repetitive auditory background are often events of behavioral importance. Such rarely occurring events are represented in the nervous system by a preattentive and automatic auditory process, which is only partially under attentional control. A correlate in human electroencephalographic recordings for neuronal mechanisms of change detection is the so-called mismatch negativity (MMN) that may serve as a trigger for reallocating attention toward the deviants. Its characteristic feature is a negative wave occurring 200 milliseconds after stimulus onset in response to an infrequent deviant stimulus, which is embedded in a sequence of repetitive standard tones. To evoke MMN, the deviant and standard stimuli can be selected from a variety of stimuli (i.e., pure tones, vowels) and differ in various aspects such as frequency, duration, and level or even being omitted. Although there is a large data basis on MMN available, only few publications approach its cellular basis in terms of cortical neuronal response properties. Recently, stimulus-specific adaptation has been proposed as a candidate neuronal mechanism underlying the generation of MMN. In experiments on anesthetized animals, stimulus-specific adaptation was identified at different stages of the auditory pathway, namely cat auditory cortex, mouse auditory thalamus, and rat inferior colliculus. In addition, there were attempts to demonstrate MMN with means of event-related potentials in rodents, but the resulting patterns are weak or ambiguous. To address the neuronal basis of MMN, the present study focuses on the awake rat primary auditory cortex. Neurons and evoked local field potentials were recorded in parallel and could provide a bridge between cellular properties and electroencephalographic recordings. The following questions are addressed. Whether and how is SSA present in neurons of the primary auditory cortex in the awake rat? Do the evoked local field potentials adapt in a similar manner as neurons and do they exhibit an MMN-like pattern? Finally, can we establish a contribution of single neuron adaptation to adaptation of evoked local field potentials? A total of 76 single units and small multiunit clusters were recorded (n = 27 and n = 49, respectively) from primary auditory cortex of the awake rat. For a subset of units, evoked local field potentials were recorded in parallel to the extracellular spike recordings from the same electrode. The frequency response area was characterized for each unit, and, depending on its characteristic frequency, two frequencies, symmetrically centered around the characteristic frequency, were chosen for the two tones in the adaptation paradigm. The two pure tones were presented in an oddball sequence of 800 tones, with one tone being the highly probable standard and the other one the rarely occurring deviant. In a second consecutive sequence, the frequencies of standard and deviant were swapped. To identify different factors controlling stimulus-specific adaptation, deviant probability and frequency separation were varied systematically, giving rise to four different stimulus conditions and one control condition. The main findings were as follows. (1) Isolated units in primary auditory cortex of the awake rat showed stimulus-specific adaptation primarily during the onset response but could not be observed during later inhibition or rebound of activity. Stimulus-specific adaptation of isolated units depended on at least two factors: frequency separation between standard tone and deviant and the deviant probability. However, stimulus-specific adaptation was independent of the specific frequency, indicating that stimulus-specific adaptation might be a more general property of cortical neurons. (2) Certain components of evoked local field potentials adapted in a stimulus-specific manner (i.e., the fast negative deflection and partially the slower positive deflection). There was, however, no MMN response present. (3) Spike adaptation correlated well with the adaptation of the negative deflection but not the positive deflection. Adaptation of the negative deflection resembled spike adaptation with respect to magnitude and dependency on frequency separation and deviant probability. (4) Stimulus specific adaptation improves on the level of single neurons the discriminability of deviant stimuli from the acoustic background. This was shown by a detailed analysis of neuronal responses with means of signal detection theory

    Machine learning reveals interhemispheric somatosensory coherence as indicator of anesthetic depth

    Full text link
    The goal of this study was to identify features in mouse electrocorticogram recordings that indicate the depth of anesthesia as approximated by the administered anesthetic dosage. Anesthetic depth in laboratory animals must be precisely monitored and controlled. However, for the most common lab species (mice) few indicators useful for monitoring anesthetic depth have been established. We used electrocorticogram recordings in mice, coupled with peripheral stimulation, in order to identify features of brain activity modulated by isoflurane anesthesia and explored their usefulness in monitoring anesthetic depth through machine learning techniques. Using a gradient boosting regressor framework we identified interhemispheric somatosensory coherence as the most informative and reliable electrocorticogram feature for determining anesthetic depth, yielding good generalization and performance over many subjects. Knowing that interhemispheric somatosensory coherence indicates the effectively administered isoflurane concentration is an important step for establishing better anesthetic monitoring protocols and closed-loop systems for animal surgeries

    Deep-learning-based identification, tracking, pose estimation and behaviour classification of interacting primates and mice in complex environments

    Full text link
    The quantification of behaviors of interest from video data is commonly used to study brain function, the effects of pharmacological interventions, and genetic alterations. Existing approaches lack the capability to analyze the behavior of groups of animals in complex environments. We present a novel deep learning architecture for classifying individual and social animal behavior, even in complex environments directly from raw video frames, while requiring no intervention after initial human supervision. Our behavioral classifier is embedded in a pipeline (SIPEC) that performs segmentation, identification, pose-estimation, and classification of complex behavior, outperforming the state of the art. SIPEC successfully recognizes multiple behaviors of freely moving individual mice as well as socially interacting non-human primates in 3D, using data only from simple mono-vision cameras in home-cage setups

    A robust model of stimulus-specific adaptation validated on neuromorphic hardware

    Get PDF
    Stimulus-Specific Adaptation (SSA) to repetitive stimulation is a phenomenon that has been observed across many different species and in several brain sensory areas. It has been proposed as a computational mechanism, responsible for separating behaviorally relevant information from the continuous stream of sensory information. Although SSA can be induced and measured reliably in a wide variety of conditions, the network details and intracellular mechanisms giving rise to SSA still remain unclear. Recent computational studies proposed that SSA could be associated with a fast and synchronous neuronal firing phenomenon called Population Spikes (PS). Here, we test this hypothesis using a mean-field rate model and corroborate it using a neuromorphic hardware. As the neuromorphic circuits used in this study operate in real-time with biologically realistic time constants, they can reproduce the same dynamics observed in biological systems, together with the exploration of different connectivity schemes, with complete control of the system parameter settings. Besides, the hardware permits the iteration of multiple experiments over many trials, for extended amounts of time and without losing the networks and individual neural processes being studied. Following this “neuromorphic engineering” approach, we therefore study the PS hypothesis in a biophysically inspired recurrent networks of spiking neurons and evaluate the role of different linear and non-linear dynamic computational primitives such as spike-frequency adaptation or short-term depression (STD). We compare both the theoretical mean-field model of SSA and PS to previously obtained experimental results in the area of novelty detection and observe its behavior on its neuromorphic physical equivalent model. We show how the approach proposed can be extended to other computational neuroscience modelling efforts for understanding high-level phenomena in mechanistic models

    The LIM-only protein FHL2 interacts with β-catenin and promotes differentiation of mouse myoblasts

    Get PDF
    FHL2 is a LIM-domain protein expressed in myoblasts but down-regulated in malignant rhabdomyosarcoma cells, suggesting an important role of FHL2 in muscle development. To investigate the importance of FHL2 during myoblast differentiation, we performed a yeast two-hybrid screen using a cDNA library derived from myoblasts induced for differentiation. We identified β-catenin as a novel interaction partner of FHL2 and confirmed the specificity of association by direct in vitro binding tests and coimmunoprecipitation assays from cell lysates. Deletion analysis of both proteins revealed that the NH2-terminal part of β-catenin is sufficient for binding in yeast, but addition of the first armadillo repeat is necessary for binding FHL2 in mammalian cells, whereas the presence of all four LIM domains of FHL2 is needed for the interaction. Expression of FHL2 counteracts β-catenin–mediated activation of a TCF/LEF-dependent reporter gene in a dose-dependent and muscle cell–specific manner. After injection into Xenopus embryos, FHL2 inhibited the β-catenin–induced axis duplication. C2C12 mouse myoblasts stably expressing FHL2 show increased myogenic differentiation reflected by accelerated myotube formation and expression of muscle-specific proteins. These data imply that FHL2 is a muscle-specific repressor of LEF/TCF target genes and promotes myogenic differentiation by interacting with β-catenin

    Gap-induced reductions of evoked potentials in the auditory cortex: a possible objective marker for the presence of tinnitus in animals

    Get PDF
    Animal models of tinnitus are essential for determining the underlying mechanisms and testing pharmacotherapies. However, there is doubt over the validity of current behavioural methods for detecting tinnitus. Here, we applied a stimulus paradigm widely used in a behavioural test (gap-induced inhibition of the acoustic startle reflex GPIAS) while recording from the auditory cortex, and showed neural response changes that mirror those found in the behavioural tests. We implanted guinea pigs (GPs) with electrocorticographic (ECoG) arrays and recorded baseline auditory cortical responses to a startling stimulus. When a gap was inserted in otherwise continuous background noise prior to the startling stimulus, there was a clear reduction in the subsequent evoked response (termed gap-induced reductions in evoked potentials; GIREP), suggestive of a neural analogue of the GPIAS test. We then unilaterally exposed guinea pigs to narrowband noise (left ear; 8-10 kHz; 1 hour) at one of two different sound levels - either 105 dB SPL or 120 dB SPL – and recorded the same responses seven-to-ten weeks following the noise exposure. Significant deficits in GIREP were observed for all areas of the auditory cortex (AC) in the 120 dB-exposed GPs, but not in the 105 dB-exposed GPs. These deficits could not simply be accounted for by changes in response amplitudes. Furthermore, in the contralateral (right) caudal AC we observed a significant increase in evoked potential amplitudes across narrowband background frequencies in both 105 dB and 120 dB-exposed GPs. Taken in the context of the large body of literature that has used the behavioural test as a demonstration of the presence of tinnitus, these results are suggestive of objective neural correlates of the presence of noise-induced tinnitus and hyperacusis

    Evaluation of Concomitant Systemic Treatment in Older Adults With Head and Neck Squamous Cell Carcinoma Undergoing Definitive Radiotherapy

    Full text link
    IMPORTANCE The number of older adults with head and neck squamous cell carcinoma (HNSCC) is increasing, and these patients are underrepresented in clinical trials. It is unclear whether the addition of chemotherapy or cetuximab to radiotherapy is associated with improved survival in older adults with HNSCC. OBJECTIVE To examine whether the addition of chemotherapy or cetuximab to definitive radiotherapy is associated with improved survival in patients with locoregionally advanced (LA) HNSCC. DESIGN, SETTING, AND PARTICIPANTS The Special Care Patterns for Elderly HNSCC Patients Undergoing Radiotherapy (SENIOR) study is an international, multicenter cohort study including older adults (≥65 years) with LA-HNSCCs of the oral cavity, oropharynx/hypopharynx, or larynx treated with definitive radiotherapy, either alone or with concomitant systemic treatment, between January 2005 and December 2019 at 12 academic centers in the US and Europe. Data analysis was conducted from June 4 to August 10, 2022. INTERVENTIONS All patients underwent definitive radiotherapy alone or with concomitant systemic treatment. MAIN OUTCOMES AND MEASURES The primary outcome was overall survival. Secondary outcomes included progression-free survival and locoregional failure rate. RESULTS Among the 1044 patients (734 men [70.3%]; median [IQR] age, 73 [69-78] years) included in this study, 234 patients (22.4%) were treated with radiotherapy alone and 810 patients (77.6%) received concomitant systemic treatment with chemotherapy (677 [64.8%]) or cetuximab (133 [12.7%]). Using inverse probability weighting to attribute for selection bias, chemoradiation was associated with longer overall survival than radiotherapy alone (hazard ratio [HR], 0.61; 95% CI, 0.48-0.77; P < .001), whereas cetuximab-based bioradiotherapy was not (HR, 0.94; 95% CI, 0.70-1.27; P = .70). Progression-free survival was also longer after the addition of chemotherapy (HR, 0.65; 95% CI, 0.52-0.81; P < .001), while the locoregional failure rate was not significantly different (subhazard ratio, 0.62; 95% CI, 0.30-1.26; P = .19). The survival benefit of the chemoradiation group was present in patients up to age 80 years (65-69 years: HR, 0.52; 95% CI, 0.33-0.82; 70-79 years: HR, 0.60; 95% CI, 0.43-0.85), but was absent in patients aged 80 years or older (HR, 0.89; 95% CI, 0.56-1.41). CONCLUSIONS AND RELEVANCE In this cohort study of older adults with LA- HNSCC, chemoradiation, but not cetuximab-based bioradiotherapy, was associated with longer survival compared with radiotherapy alone

    fMRI adaptation revisited

    Get PDF
    Adaptation has been widely used in functional magnetic imaging (fMRI) studies to infer neuronal response properties in human cortex. fMRI adaptation has been criticised because of the complex relationship between fMRI adaptation effects and the multiple neuronal effects that could underlie them. Many of the longstanding concerns about fMRI adaptation have received empirical support from neurophysiological studies over the last decade. We review these studies here, and also consider neuroimaging studies that have investigated how fMRI adaptation effects are influenced by high-level perceptual processes. The results of these studies further emphasize the need to interpret fMRI adaptation results with caution, but they also provide helpful guidance for more accurate interpretation and better experimental design. In addition, we argue that rather than being used as a proxy for measurements of neuronal stimulus selectivity, fMRI adaptation may be most useful for studying population-level adaptation effects across cortical processing hierarchies

    GATE : a simulation toolkit for PET and SPECT

    Get PDF
    Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols, and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at the address http://www-lphe.epfl.ch/GATE/
    • …
    corecore